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Abstract
The representation of correlation functions as a contour integral has been
useful in the study of transitions to the Gaussian unitary ensemble (GUE).
We develop the formalism for transitions to the circular unitary ensemble
(CUE) and consider the general �CUE to CUE transition where �CUE denotes
a superposition of � independent CUE spectra in an arbitrary ratio. For large
matrices, we derive the two-level correlation function for all � including � = ∞
(the Poisson case). The results are useful in the study of weakly broken
partitioning symmetries and weakly coupled mesoscopic cavities.

PACS numbers: 05.45.Mt, 03.65.−w, 73.23.−b, 24.60.Lz

1. Introduction

Random-matrix theory [1–5] provides a framework for the statistical study of spectra of
diverse complex quantum systems, e.g., quantum chaotic systems, mesoscopic systems,
complex nuclei and atoms, etc. An important aspect of its applications is the universality
of spectral fluctuations. Depending on the space–time symmetries of the system, the
fluctuations are described by the three invariant random-matrix ensembles, namely, the
orthogonal ensemble (OE), the unitary ensemble (UE) and the symplectic ensemble (SE).
These are defined by invariance of the ensemble measure under the orthogonal, unitary and
symplectic transformations respectively. Gaussian ensembles (GE) of Hermitian matrices and
circular ensembles (CE) of unitary matrices are of particular interest in these studies. For GE,
the invariant ensembles are GOE, GUE and GSE and for CE, the invariant ensembles are COE,
CUE, CSE. For large matrices, the Gaussian and circular ensembles give the same result for
the same invariance class.

For systems with a weakly broken symmetry, spectral fluctuations exhibit a transition from
one universal pattern to another [6–24]. The problem of such transitions has been a subject of
investigations since the 1960s when the classic papers of Rosenzweig and Porter [6] and Dyson
[7] were published. In these studies, one considers a single symmetry breaking parameter τ ,
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which governs the transition and is a relative measure of the symmetry breaking and symmetry
preserving parts. For large matrices, the transition in fluctuations occurs discontinuously at
τ = 0. However, a smooth transition in fluctuations is obtained for small τ as a function
of the appropriately rescaled transition parameter � [8–11]. These are verified in numerical
simulations of quantum chaotic systems [3, 20–22] and have been used in the analysis of
atomic [6] and nuclear [9, 13] spectra. The CE transitions are applicable to quantum chaotic
maps [3, 22] and mesoscopic transport problems [4, 23, 24].

When the time reversal symmetry is broken, one observes OE–UE and SE–UE transitions
[10–12]. Similarly for the breaking of a partitioning symmetry involving several quantum
numbers, one considers �OE–OE, �UE–UE and �SE–SE transitions, where � refers to the
number of quantum numbers and � ensembles refer to the superposition of � independent
spectra in arbitrary ratio [6, 9, 13–15]. For � → ∞ the initial ensemble becomes Poisson
[9, 14–19]. The transition ensembles also give identical results for the Gaussian and circular
cases with suitably defined parameter �. For example, OE–UE and SE–UE transitions in
CE [12] are found to be the same as the corresponding transitions in GE [10, 11]. Similarly
transition results obtained for the Poisson to GUE [18] transition coincide with the results of
Poisson to CUE transition [14, 15] and 2CUE to CUE transition results [14, 15] coincide with
2GUE to GUE results [13].

Transitions involving the Poisson ensemble as the initial condition have been studied by
many authors [9, 14–19, 25–28]. However, finite � is more realistic in applications. In this
paper, we derive the unfolded spectral form factor for �CUE to CUE transition for arbitrary
�. Here �CUE is an ensemble of block-diagonal matrices with � blocks of dimensions
N1, N2, . . . , N�

( ∑�
j=1 Nj = N

)
, each block being an independent CUE. � = 1 corresponds

to the case where the ensemble is CUE for all τ . On the other hand, � = N corresponds
to independent eigenangles, giving thereby the Poisson initial spectrum for N → ∞. For
intermediate �, we have superposition of � independent CUE spectra initially. These transitions
apply to time-reversal noninvariant systems with a weakly broken partitioning symmetry
[9, 14] or weakly coupled mesoscopic chaotic cavities [4, 23, 24]. These are analogous to
transitions in time-reversal invariant systems involving, e.g., LS-breaking in atomic spectra
[6], isospin breaking in nuclear spectra [13], parity breaking in quantum kicked rotors [22]
and chaos transition in anisotropic Kepler problem [20].

Brezin and Hikami [25] have developed the contour-integral method to study Poisson to
GUE transition. This method has been used by Kunz and Shapiro [18] to derive the two-level
correlation function, given earlier by one of the present authors [14]. In this paper, we develop
the contour-integral method for the circular ensembles and study transitions for all �. We
believe that the method is generalizable and the result is applicable to other ensembles, e.g.,
nonuniform circular ensembles [29] and also Laguerre and Jacobi ensembles [30].

2. The �CUE–CUE transition

We consider an ensemble of N-dimensional unitary matrices U(τ) which depends on the
symmetry breaking parameter τ . Without loss of generality, we take the symmetry preserving
part U(0) to be a diagonal matrix with matrix elements Ujk(0) = exp[iφj ]δjk where φj are the
eigenangles of U(0). Transitions in unitary ensembles are defined in terms of the Brownian
motion model [7, 12],

U(τ + δτ) = U(τ) exp[i
√

δτM(τ)]. (1)

Here, δτ is infinitesimal and M(τ), independent for each τ , is a member of GUE with variance
v2 = 1 for real and imaginary parts of the off-diagonal matrix elements. (The corresponding
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Gaussian ensembles are the ensembles of Hermitian matrices H(τ +δτ) = H(τ)+
√

δτM(τ).)
Let θj be the eigenangles of U(τ). We write the sets {φ1, . . . , φN } and {θ1, . . . , θN } as �

and 	 respectively. Similarly we write the sets {eiφ1 , . . . , eiφN } and {eiθ1 , . . . , eiθN } as ei� and
ei	, and define the corresponding infinitesimal volume in N-dimensional space as d	 and d�.
Then the joint-probability density (jpd) for transitions to CUE for arbitrary τ is given as

P(	; τ) =
∫

d�P(	,�; τ)P (�; 0), (2)

where P(�; 0) is the initial jpd. P(	,�; τ) is the conditional jpd given [12] by

P(	,�; τ) = 1

N !

QN(	)

QN(�)
exp

(
N(N2 − 1)τ

12

)
det[f (θj − φk; τ)]j,k=1,...,N . (3)

Here μ takes integral or half-integral values for N = odd or even, respectively,

f (ψ) = 1

2π

∞∑
μ=−∞

e−μ2τ+iμψ (4)

and

QN(	) =
∏

1�k<j�N

sin

(
θj − θk

2

)
. (5)

Note that QN(	) is antisymmetric and related to the Vandermonde determinant of variables
ei	 [1]. For τ → ∞, P (	,�;∞) becomes independent of � and gives the CUE jpd

P(	;∞) = (2π)−N(N !)−12N(N−1)|QN(	)|2. (6)

Equation (3) is equivalent to the Itzykson–Zuber integral, used in the Gaussian case [1, 10,
18]. For �CUE to CUE transition, the initial jpd is

P(�; 0) ∝ [∣∣QN1

(
φ1, . . . , φN1

)
QN2

(
φN1+1, . . . , φN1+N2

) · · · QN�

(
φN−N�+1, . . . , φN

)∣∣2

+ permutations
]
. (7)

For � = N,P (�; 0) = (1/2π)N .
We consider the ensemble average of a symmetric function F(	) in two steps as in

[14, 15, 18]. We use a bar to denote the averaging over θj with respect to the conditional jpd.
Thus we write

F(�) =
∫

d	F(	)P (	,�; τ), (8)

where det[f (θj − φk)] in P(	,�; τ) can be replaced by N !
∏N

j=1 f (θj − φj ) using the
symmetry of F . We use angular brackets to represent the averaging over φj ,

〈F〉 =
∫

d�F(�)P (�; 0). (9)

Thus 〈F〉 is the average of F(	) with respect to P(	; τ).

3. Correlation functions as contour integrals

Following [18, 25] we compute the ensemble average of the following quantities

C1(p) =
N∑

j=1

exp(ipθj ), (10)

3



J. Phys. A: Math. Theor. 42 (2009) 315101 Vinayak and A Pandey

C2(p, q) =
N∑

j,k=1
(j �=k)

exp(ipθj + iqθk), (11)

where p and q can take all possible integral values. Then 〈C1(p)〉 and 〈C2(p, q)〉 are the
Fourier transforms of the one-point and two-point correlation functions, respectively. For
integer bj ’s, we have

eN(N2−1)τ/12
∫

d	QN(	)

N∏
j=1

(f (θj − φj ) eibj θj )

= exp

⎡
⎣ N∑

j=1

(−τb2
j + ibjφj

)⎤⎦QN(� + 2iτb), (12)

where � + 2iτb represents the set {φ1 + 2iτb1, . . . , φN + 2iτbN }. Equation (12) is proved in
two steps. First, (8) with F = 1 gives (12) for bj = 0. Then for bj �= 0 we use the identity∑∞

l=−∞ g(l) = ∑∞
l=−∞ g(l + b) for integer l. Using this for C1(p) and C2(p, q) we get the

conditional averages C1(p), C2(p, q),

C1(p) = exp[−p2τ − (N − 1)pτ ]
N∑

j=1

eipφj

N∏
k=1

(k �=j)

(
1 +

eiφkχp

eiφk − eiφj

)
, (13)

C2(p, q) = exp[−p2τ − (N − 1)pτ ] exp[−q2τ − (N − 1)qτ ]
N∑

j,k=1
(j �=k)

eipφj +iqφkF (eiφj , eiφk )

×
N∏

l=1
(l �=j)

(
1 +

eiφl χp

eiφl − eiφj

) N∏
l′=1

(l′ �=k)

(
1 +

eiφl′ χq

eiφl′ − eiφk

)
, (14)

where

χp = exp(2pτ) − 1 (15)

and

F(z1, z2) = (z1 − z2)(z1 e2qτ − z2 e2pτ )

(z1 − z2 e2pτ )(z1 e2qτ − z2)
. (16)

Finally, averaging over the initial jpd we obtain

〈C1(p)〉 = K(p; τ)

∮


dz

2π i

zp

z

�∏
j=1

〈
Nj∏
k=1

ξ(eiφk , z, p)

〉
, (17)

〈C2(p, q)〉 = K(p; τ)K(q; τ)

∮


dz1

2π i

∮


dz2

2π i

z
p

1

z1

z
q

2

z2
F(z1, z2)

�∏
j=1

DNj
(z1, z2). (18)

Here

DM =
〈

M∏
k=1

ξ(eiφk , z1, p)ξ(eiφk , z2, q)

〉
, (19)
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K(p; τ) = − exp[−p2τ − (N − 1)pτ ](χp)−1, (20)

ξ(eiφ, z, p) = 1 + χp eiφ(eiφ − z)−1, (21)

and contour  consists of two concentric circles 1 and 2 of radii 1 +ε and 1−ε respectively,
for small ε > 0, enclosing all the initial eigenvalues. We choose 1 and 2 both in the
anti-clockwise direction so that the  integral is the difference of the 1 and 2 integrals.
We avoid singularities of F by choosing |p|τ > ε and |q|τ > ε. In (19), angular brackets
denote average over single M-dimensional CUE (i.e., average with respect to the jpd (6)
with N = M). Similarly, on the right-hand side of (17) the average is over M-dimensional
CUEs where M = N1, N2, . . . , N�; the same remark applies to (32). Equations (8)–(18) are
analogous to corresponding equations for the Poisson to GUE transition in [18, 25].

4. The spectral form factor for large N

The conditional jpd (3) with the choice (7) has circular symmetry for the 	 spectrum. This
implies stationarity of the correlation functions. Thus, for example, 〈C1(p)〉 = Nδp0, implying
constant level density. Similarly 〈C2(p, q)〉 is nonzero only for p = −q. We define the
covariance

C(p, q) = 1

N
[〈C2(p, q)〉 − 〈C1(p)〉〈C1(q)〉], (22)

which is again nonzero only for p = −q. For large N, the unfolded spectral form factor
b2(k;�) is defined as

b2(k;�) = −lim C(p,−p), (23)

where we have taken p = Int(Nk + 1/2) and � is defined below after (24). The limit in (23)
is for N → ∞, p → ∞ such that p/N = k. In the present case, we can replace C by 〈C2〉/N
for |k| > (2N)−1. The two-level cluster function Y2(r;�) is given by

Y2(r;�) =
∫

dk e−2π irkb2(k;�). (24)

Here r = (θ1 − θ2)/D,D is the average spacing and � = τv2/D2 is the rescaled transition
parameter [8, 12]. For CE, D = 2π/N so that � = τN2/4π2 with our above choice v2 = 1.
Note that � = O(1) for τ = O(N−2). (For GE [8, 9] with a fixed spectral span for large
N,� = O(1) for τ = O(N−1) as in figure 1.)

To calculate 〈C2(p, q)〉 we use the antisymmetric form of QN(�) to replace
2N(N−1)|QN(�)|2 by N ! det[exp(i(l − m)φm)] in the φ integrals in (19). This comes about
because out of the two determinants in |QN(�)|2, each term in one of the determinants
contributes equally to the integral. Thus DM can be written as

DM = det[Dlm]l,m=1,...,M, (25)

where

Dlm(z1, z2) =
∫ 2π

0

dφ

2π
exp(i(l − m)φ)ξ(eiφ, z1, p)ξ(eiφ, z2, q). (26)

To evaluate matrix elements Dlm, note first that for integer n,∫ 2π

0

dφ

2π

(
ei(n+1)φ

eiφ − z

)
=

{
znS(n), |z| < 1,

zn[S(n) − 1], |z| > 1,
(27)
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(r)

r

8
8

8

(c)

Figure 1. �2(r) versus r for: (a) 2UE to UE, (b) 3UE to UE and (c) Poisson to UE transitions
at different � values. Solid lines show � = 0,∞ cases. Dashed lines represent transition curves
obtained by numerical integration of (45). Dots represent data from simulations of: (a) 2GUE to
GUE with f1 = 0.3 and f2 = 0.7, (b) 3GUE to GUE with f1 = f2 = f3 = 1/3 and (c) Poisson
to GUE transitions. We have generated 1000-member Gaussian ensembles of 1000-dimensional
matrices (999-dimensional in case (b)) and considered the middle 200 levels in each case. The
initial density is semicircular in [−2, 2] for (a) and (b), and uniform in [0, 1] for (c). With this
normalization, we have � = τN/2π2 in (a) and (b), and τN/2 in (c) for the GE. In this case
τ = O(N−1) for � = O(1).

where S(n) = 1 for n � 0 and S(n) = 0 for n < 0. Since the contour  can be split into two
contours 1 and 2 as mentioned above, we have for a function G(z),

∮


dz

2π i
G(z) =

∮
1

dz

2π i
G(z) −

∮
2

dz

2π i
G(z). (28)
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We need to calculate matrix elements Dlm for four cases, namely, (i) |z1| > 1, |z2| > 1
(ii) |z1| < 1, |z2| < 1, (iii) |z1| > 1, |z2| < 1 and (iv) |z1| < 1, |z2| > 1. We use (27) to
evaluate the integrals in (26) after making a partial-fraction expansion of the products of ξ ’s.
It is easy to prove that for the first two cases Dlm are triangular matrices. The determinants
are DM = 1 and DM = exp[2(p + q)Mτ ] respectively for (i) and (ii). The matrix is not
triangulated when z1 and z2 are on different circles. For (iii) we obtain, with n = l − m,

Dlm = δn0 + S(n)
[
χqz

n
2 + χpχqz

n+1
2 (z2 − z1)

−1
]

+ [S(n) − 1]
[
χpzn

1 − χpχqz
n+1
1 (z2 − z1)

−1
]
.

(29)

To calculate DM , in this case, we replace the m′th column Cm by Cm − z2Cm+1 for
m = 1, . . . ,M − 1 and then we replace the n′th row Rn by Rn − Rn+1/z1. Now the matrix
[Dlm] becomes tridiagonal and its determinant gives on expansion,

z1DM = (z1 e2qτ + z2 e2pτ )DM−1 − z2 e2(p+q)τ DM−2. (30)

To solve the recursion relation (30), we need to calculate D1 and D2 from (29). We find
D1 = 1 + χq + z2χpχq(z2 − z1)

−1. D2 can be determined from (30) if we choose D0 = 1.
Solving (30) we get(

1 − z2 e2pτ

z1 e2qτ

)
e−2qMτ DM =

[(
z2 e2pτ

z1 e2qτ

)M−1

− 1

]
z2 e2pτ

z1 e2qτ
+

[
1 −

(
z2 e2pτ

z1 e2qτ

)M
]

e−2qτ D1.

(31)

Finally for (iv) we obtain Dlm with z1 and p interchanged with z2 and q respectively in (29),
and then DM with the same interchanges in (31). A similar calculation for the average of
product of ξ ’s in (17) gives determinant of triangular matrices as in cases (i) and (ii). We find〈

M∏
k=1

ξ(eiφk , z, p)

〉
=

{
1, |z| > 1,

e2pMτ , |z| < 1.
(32)

Note that (31) and (32) contain the entire information about the initial jpd. One can use
them to derive results for all N, as in [15] for � = 2,∞. We consider here only the large-N
results.

Now we derive b2(k;�) for N → ∞. We write p = Nk and use the change of variables,

z1 = (1 + cδ/N) exp[i(x + y/2N)], (33)

z2 = (1 + c′δ/N) exp[i(x − y/2N)], (34)

in (18). Here δ = Nε > 0 and c, c′ take values ±1 depending on which circle z1 and z2

belong to. We write fj = Nj/N, a = 8π2�,u = iy + 2cδ and consider large N. Then
DNj

= 1 for c = c′ (cases (i) and (ii)). For c �= c′ (cases (iii) and (iv)), we have up to
O(N−1), z1 − z2 = u exp(ix)/N, z1/z2 = 1 + u/N . Then we obtain, D1 = 1 − akc(1 −
ak/u)/N, z

p

1 z
−p

2 = exp(ku),K(p; τ)K(−p; τ) = −N2 exp(−ak2)/(ak)2, F (z1, z2) =
u(u − 2ak)/(ak − u)2, dz1 dz2 = −z1z2 dx dy/N and

DNj
= e−akcfj

[
1 +

(ak)2(e(2ak−u)fj c − 1)

u(2ak − u)

]
. (35)

Using these large-N results, we find that the contributions of cases (i) and (ii) to C(p,−p)

are zero. On the other hand cases (iii) and (iv), after performing the x integral, give from (22)
and (23),

b2(k;�) = e−a|k|(1+|k|)

2π ia|k|
∫ γ +i∞

γ−i∞
du eak2u

(∏�
j=1[ea|k|fj (2−u) − (1 − u)2]

(1 − u)2[u(2 − u)]�−1
+ 1

)
, (36)

7
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where we have rescaled u in (35) as a|k|u in (36) and taken 2δ = a|k|γ . The corrections to
(35) and (36) are O(N−1). Note that the second term (+1) in the brackets of the integrand of
(36) comes from 〈C1(p)〉〈C1(−p)〉. We remark also that, in the intermediate step, b2(k;�) is
given as

∑
c over the right-hand side of (36) with |k| replaced by kc everywhere including the

definition of γ . But, for kc < 0, the integral vanishes and only one of the two term survives,
giving thereby (36). This is explained below.

Equation (36) is our main result. Using this result one can derive b2(k;�) for all �CUE
to CUE transitions. Note that the integrand in (36) can have poles at u = 0, 1 and 2. To
evaluate (36), we close the contour by a vertical infinite semicircle either on the left or, along
with a negative sign, on the right side of the line 
(u) = γ where γ → 0. The former applies
when the coefficient of u in the exponent of integrand in (36) is positive and the latter when it
is negative. This ensures that the contribution of the semicircular part goes to zero for a large
radius in both cases, as also does the contribution of the small rectangular strip near ±i∞
in the former case. The (+1) term in (36), arising from 〈C1(p)〉〈C1(−p)〉, cancels exactly
the corresponding oscillatory contribution from 〈C2(p,−p)〉; a similar cancellation occurs in
cases (i) and (ii). We have 2� terms in the expansion of (36) and for each term the location of
the semicircle depends on the sign of a|k|(|k|−∑n

m=1 fjm

)
where � � n � 0 and � � jm � 1.

Note also that in the intermediate step, mentioned above, with 2δ = akcγ there is no pole
enclosed by the contour for kc < 0, since γ < 0 and sign of the coefficient of u is always
positive in this case.

5. Results for � = 2, 3, ∞
For � = 1, the integrand has pole only at u = 1. For |k| � 1, the contour should be closed by
the semicircle on the left which contains no pole. For |k| � 1, the contour should be closed,
along with the negative sign, by the semicircle on the right which contains the pole. Thus we
obtain the CUE form factor [1],

b2(k) =
{

0 for |k| � 1,

1 − |k| for |k| � 1.
(37)

Note that the u = 1 pole yields (37) for all �.
For � = 2 we obtain b2(k;�) in four ranges of |k|, namely, |k| � 1, 1 � |k| �

(f1, f2)>, (f1, f2)> � |k| � (f1, f2)< and (f1, f2)< � |k|. We write the result compactly as

b2(k;�) = b2(k;∞) +
1

16π2�|k| [h(0) − h(k1) − h(k2) + h(k3)], (38)

where h(x) = exp[−8π2�|k|(|k| + 1 − 2x)] and k1 = (|k|, f1)<, k2 = (|k|, f2)<, and
k3 = (|k|, 1)<. One can check that (38) can also be written as

b2(|k|;�) = b2(|k|;∞) − 1

2

[∫ 2|k|+1

(2|k|+|f1−f2|,1)>

dy g(y) −
∫ (2|k|−|f1−f2|,1)>

(2|k|−1,1)>

dy g(y)

]
, (39)

where g(y) = exp[8π2�|k|(|k| − y)]. One can similarly deal with larger values of �. For
example, for � = 3 we obtain b2(k;�) in eight ranges of |k|,
b2(k;�) = b2(k;∞) +

1

4a|k|
[
(3 − ak2)h(0) −

∑
j

(1 − a|k|(|k| + fj − 2kj ))h(kj )

−
∑
j>k

(1 + a|k|(|k| + fj + fk − 2k1+j+k))h(k1+j+k)

+ (3 + a|k|(|k| + 1 − 2k7))h(k7)

]
, (40)

8
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where kj = (|k|, fj )<, k1+j+k = (|k|, fj + fk)<, k7 = (|k|, 1)< for j, k = 1, 2, 3. Integral
form (39) is useful for the calculation of Y2(r;�) for � = 2. A similar integral form can be
obtained from (40) for � = 3:

b2(|k|;�) = b2(|k|;∞) +
1

4

[
3∑

j=1

∫ (2|k|−αj ,1)>

(2|k|−1,1)>

dy g(y)

+
3∑

j=1

∫ (2|k|+αj ,1)>

(2|k|−αj ,1)>

dy

(
1 + a|k|

{
|k| − y +

1 − αj

2

})
g(y)

−
∫ 2|k|+1

(2|k|−1,1)>

dy (1 + a|k|(|k| − y)) g(y)

−
3∑

j=1

(1 + a|k|αj )

∫ 2|k|+1

(2|k|+αj ,1)>

dy g(y)

]
, (41)

where α1 = f2 + f3 − f1, α2 = f1 + f3 − f2 and α3 = f1 + f2 − f3.
For the Poisson initial condition, � → ∞, fj → 0 such that

∑
fj = 1. We obtain

from (36),

b2(k;�) = e−ak2−a|k|

2π ia|k|
∫ γ +i∞

γ−i∞
du eak2u

[
u(2 − u)

(1 − u)2
eak/u + 1

]
. (42)

In this case the infinite semicircle should be chosen in the left half plane. Then only u = 0
pole is enclosed by the contour which we replace by a circular contour of radius less than
unity. Next the substitution u = 1/z and a partial integration gives,

b2(k;�) =
∮

|z|>1

dz

2π i

1

z(z − 1)

(
1 − |k|

z2

)
× exp[−a|k|(1 − z + |k|(1 − 1/z))]. (43)

Now, as in [18], we choose the contour |z| = √|k| in (43). In this case, the contribution of
the z = 1 pole gets excluded for |k| < 1 and therefore its contribution should be calculated
separately. The latter gives 1 − |k| and thus b2(k;∞) given in (37). Then the substitutions
z = √|k| exp(iθ) and y = −cos θ give,

b2(k;�)= b2(k;∞)− 2

π

∫ 1

−1
dy

√
1 − y2(2y

√|k| + 1)

|k| + 2y
√|k| + 1

× exp[−8π2�|k|(|k| + 2y
√

|k| + 1)].

(44)

Results, (39) and (44), were given earlier [14, 15]. Also, (44) is obtained for Poisson to GUE
transition as in [18] where k and 2� are given as u/2π and �2 respectively.

Y2(r;�) for � = 2,∞ are given in [14]. One can similarly obtain Y2(r;�) for � = 3.
We have calculated numerically the number variance [1, 2] �2(r;�),

�2(r;�) = r −
∫ r

−r

ds(r − s)Y2(s;�)

=
∫ ∞

−∞
dk(1 − b2(k;�))

sin2(πkr)

π2k2
. (45)

Figure 1 shows the comparison of CE and GE results for � = 2, 3,∞. Transition occurs for
τ = O(1/N) in the GE, as opposed to τ = O(1/N2) in the CE.
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6. Conclusion

By using the contour-integral method, we have obtained a compact expression for the spectral
form factor for the �CUE to CUE transition. We believe that the same result will be obtained for
�GUE to GUE transitions as well as for similar transitions in other ensembles [29, 30] in terms
of a suitably defined parameter �. We can also show that the Poisson to CUE result is valid for
arbitrary initial density as in [18] for Poisson to GUE; this is discussed elsewhere [19]. Our
results are applicable to weakly broken partitioning symmetries in complex quantum systems
with several overlapping representations and weakly coupled cavities. Finally, we mention
that the original problem of Poisson to GOE and the related �GOE to GOE transitions, as also
the corresponding COE transitions, is still largely unsolved. However there are approximate
results given in [14] and for the Poisson to GOE transition some exact results are given in
terms of Grassmann integrals by Guhr and Kohler [26, 27] and Datta and Kunz [28].

Acknowledgments

We thank the referees for valuable suggestions. One of us (Vinayak) acknowledges UGC,
India for financial support.

References

[1] Mehta M L 2004 Random Matrices (New York: Academic)
[2] Brody T A, Flores J, French J B, Mello P A, Pandey A and Wong S S M 1981 Random-matrix physics: spectrum

and strength fluctuations Rev. Mod. Phys. 53 385
[3] Haake F 1991 Quantum Signatures of Chaos (Berlin: Springer)
[4] Beenakker C W J 1997 Random-matrix theory of quantum transport Rev. Mod. Phys. 69 731
[5] Guhr T, Groeling A M and Widenmüller H A 1998 Random-matrix theories in quantum physics: common

concepts Phys. Rep. 299 189
[6] Rosenzweig N and Porter C E 1960 Repulsion of energy levels in complex atomic spectra Phys. Rev. 120 1698
[7] Dyson F J 1962 Brownian-motion model for the eigenvalues of a random matrix J. Math. Phys. 3 1191
[8] Pandey A 1981 Statistical properties of many-particle spectra: IV. New ensembles by Stieltjes transform method

Ann. Phys., NY 134 110
[9] French J B, Kota V K B, Pandey A and Tomsovic S 1988 Statistical properties of many-particle spectra: V.

Fluctuations and symmetries Ann. Phys., NY 181 198
[10] Pandey A and Mehta M L 1983 Gaussian ensembles of random Hermitian matrices intermediate between

orthogonal and unitary ones Commun. Math. Phys. 87 449
[11] Mehta M L and Pandey A 1983 On some Gaussian ensembles of Hermitian matrices J. Phys. A: Math. Gen.

16 2655
[12] Pandey A and Shukla P 1991 Eigenvalue correlations in the circular ensembles J. Phys. A: Math. Gen. 24 3907
[13] Guhr T and Weidenmüller H A 1990 Isospin mixing and spectral fluctuation properties Ann. Phys., NY 199 412
[14] Pandey A 1995 Brownian-motion model of discrete spectra Chaos Solitons Fractals 5 1275
[15] Pandey A 2004 Brownian-motion model of quantum-chaotic spectra: exact two-level correlations for transitions

to CUE Phase Transit. 77 835
[16] Guhr T 1996 Transition from Poisson regularity to chaos in a time-reversal noninvariant system Phys. Rev.

Lett. 76 2258
[17] Guhr T 1996 Transitions toward quantum chaos: with supersymmetry from Poisson to Gauss Ann. Phys.,

NY 250 145
[18] Kunz H and Shapiro B 1998 Transition from Poisson to Gaussian unitary statistics: the two-point correlation

function Phys. Rev. E 58 400
[19] Vinayak and Pandey A 2009 Transition from Poisson to circular unitary ensemble Pramana J. Phys. at press
[20] Wintgen D and Marxer H 1988 Level statistics of a quantized cantori system Phys. Rev. Lett. 60 971
[21] Dupuis N and Montambeaux G 1991 Aharonov–Bohm flux and statistics of energy levels in metals Phys. Rev.

B 43 14390

10

http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1016/0003-4916(81)90007-5
http://dx.doi.org/10.1016/0003-4916(88)90165-0
http://dx.doi.org/10.1007/BF01208259
http://dx.doi.org/10.1088/0305-4470/16/12/014
http://dx.doi.org/10.1088/0305-4470/24/16/026
http://dx.doi.org/10.1016/0003-4916(90)90383-Y
http://dx.doi.org/10.1016/0960-0779(94)E0065-W
http://dx.doi.org/10.1080/01411590410001691836
http://dx.doi.org/10.1103/PhysRevLett.76.2258
http://dx.doi.org/10.1006/aphy.1996.0091
http://dx.doi.org/10.1103/PhysRevE.58.400
http://dx.doi.org/10.1103/PhysRevLett.60.971
http://dx.doi.org/10.1103/PhysRevB.43.14390


J. Phys. A: Math. Theor. 42 (2009) 315101 Vinayak and A Pandey

[22] Shukla P and Pandey A 1997 The effect of symmetry-breaking in ‘chaotic’ spectral correlations
Nonlinearity 10 979

[23] Frahm K and Pichard J-L 1995 Parametric statistics of the scattering matrix: from metallic to insulating
quasi-unidimensional disordered systems J. Physique I 5 847

[24] Frahm K and Pichard J-L 1995 Brownian motion ensembles and parametric correlations of the transmission
eigenvalues: application to coupled quantum billiards and to disordered wires J. Physique I 5 877

[25] Brezin E and Hikami S 1996 Correlations of nearby levels induced by a random potential Nucl. Phys. B 479 697
[26] Guhr T and Kohler H 2002 Recursive construction for a class of radial functions: I. Ordinary space J. Math.

Phys. 43 2707
[27] Guhr T and Kohler H 2002 Recursive construction for a class of radial functions: II. Superspace J. Math.

Phys. 43 2741
[28] Datta N and Kunz H 2004 Random matrix approach to the crossover from Wigner to Poisson statistics of energy

levels J. Math. Phys. 45 870
[29] Kumar S and Pandey A 2008 Nonuniform circular ensembles Phys. Rev. E 78 026204
[30] Kumar S and Pandey A 2009 Universal spectral correlations in orthogonal-unitary and symplectic-unitary

crossover ensembles of random matrices Phys. Rev. E 79 026211

11

http://dx.doi.org/10.1088/0951-7715/10/4/012
http://dx.doi.org/10.1051/jp1:1995171
http://dx.doi.org/10.1051/jp1:1995111
http://dx.doi.org/10.1016/0550-3213(96)00394-X
http://dx.doi.org/10.1063/1.1463709
http://dx.doi.org/10.1063/1.1463218
http://dx.doi.org/10.1063/1.1644752
http://dx.doi.org/10.1103/PhysRevE.78.026204
http://dx.doi.org/10.1103/PhysRevE.79.026211

	1. Introduction
	2. The CUE-CUE transition
	3. Correlation functions as contour integrals
	4. The spectral form factor for large N
	5. Results for
	6. Conclusion
	Acknowledgments
	References

